Cervical Disc Prolapse – Clinical Presentation, Management, Post Operative Outcome and Complications

¹Dr K.V.V.S.N.Murthy, ²Dr Harshavardhan.K, ³Dr.D.S. Sekhar, ⁴Dr Sudhir Suggala, ⁵**Dr.** M .Surendra Varma,

¹In Charge Professor, Department of Neurosurgery, Government General Hospital, Vijayawada, Andhra Pradesh ²Assistant Professor, Department of Neurosurgery, Government General Hospital, Vijayawada, Andhra Pradesh ³Assistant Professor. Department of Neurosurgery, Guntur Medical College, Guntur, Andhra Pradesh. ⁴Consultant Neurosurgeon, Nagarjuna Hospital, Kanuru, Vijayawada, Andhra Pradesh ⁵Final year Mch, Department of Neurosurgery, Guntur Medical College, Guntur, Andhra Pradesh.

Abstract:

Aims: To Study and Analyze the Clinical presentation, Management, post operative outcome and complications in a series of patients with cervical disc prolapse who underwent anterior cervical discectomy and bone graft fusion with Titanium Recon plating between JANUARY 2013 to DECEMBER 2014 at Government General Hospital Guntur.

Objectives

- 1. to Study and Analyze the Clinical presentation, Management, post operative outcome and complications in a series of patients with cervical disc prolapse.
- 2. To assess and compare our own results, using standard anterior cervical discectomy with bone graft fusion with Titanium Recon plating as a better surgical procedure than ACDF alone in the treatment of cervical disc prolapse.

I. Introduction

The cervical disc prolapse with myelopathy, radiculopathy and myelo radiculopathy has been discussed in the neurosurgical literature for decades. Sir Victor Horsley²⁴ decompressed the cervical spinal cord of a patient with progressive cervical spondylotic myelopathy in 1901. The anterior treatment of cervical disc problems was reported by Bailey and Bagdley⁵ in 1960. Robinson and Smith ⁵⁴ first described the most widely used anterior operation in 1955 and made a further excellent report in 1958⁶¹. Cloward¹¹ described his anterior operation using a bone plug technique in 1958. Caspar developed a trapezoidal rigid plate with bicortical screws in 1980 for use in cervical spine

⁶⁷ Prevalence of cervical disc prolapse increases significantly with age with 15% affected at 34 years of age, 60% at 54 years, and to 90% at 65 years and older. Peak incidence is observed in 4th and 5th decades with males more affected than females. Clinical symptoms can be due to central disc extrusion with cord compression, cervical radiculopathy or cervical spondylotic myelopathy & myeloradiculopathy.

II. Material And Methods

Forty seven patients with cervical disc prolapse at one or multiple levels have been admitted, evaluated and operated by Anterior cervical discectomy with bone graft fusion and plating at government General Hospital, Guntur during the period January 2013 to December 2014. All these patients underwent detailed clinical evaluation and their neurological deficits have been recorded. The clinical presentations have been classified as radiculopathy, myelopathy and myeloradiculopathy. All these patients have been investigated with plain X-rays cervical spine and MRI of cervical spine. Postoperatively these patients have been followed up for first 15 days and there after every month by detailed clinical evaluation and postoperative x-rays cervical spine to assess the graft fusion and postoperative outcomes.

Inclusion Criteria

Patients with cervical disc prolapse with neurological deficits'.

Exclusion criteria

- ^C Cases with severe comorbid conditions preventing surgical intervention
- Cases with infection, bone disease, neoplasm, pathological fractures.
- Cases with previous cervical surgery

Cervical Disc Prolapse – Clinical Presentation, Management, Post Operative Outcome And...

- [□] Cases with congenital and spinal anomalies
- [□] Cases with traumatic cervical spine injuries.

III. Results

During January 2013 to December 2014, 155 cervical spine cases were operated, out of which 47 cases belonged to cervical discectomy with bone graft fusion and plating. The incidence of these cases among cervical spine surgery in the present study is 30.32%

Age Incidence

Related to the age, maximum observed in between 40 - 50 years, minimum age noted at 22 years, maximum 72 years.

Sex incidence

Male – Female incidence showed the male preponderance with 38 cases and female with 9 cases

Clinical Presentation : The relative incidence of symptoms and signs

Myelo Radiculopathy	: 20	: 42.55%				
Myelopathy	:18	:	38.29%			
Radiculopathy	:9	:	19.14%			

Spinal Level Involvement

Spinal level

Maximum involved at the level of C_{5-6} taking the percentage of 48.93%;

C ₆₋₇ 36.17%, C ₄₋₅ 17.02%;		
Single levels	: 44	- 93.61%
Two levels	: 3	- 6.38%
Three levels	: nil	- 0%

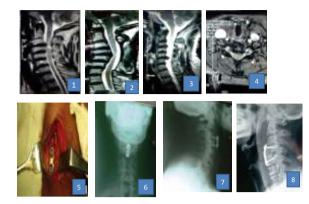
Post operative outcome

Following surgery, patients were evaluated by Odom's criteria⁴², Pre and post operative MRC grading⁷¹ of muscle power and Nurick grading²⁶. According this criteria, 37 out of 47 had an excellent outcome; 6 had a good outcome; 3 had fair outcome and 1 had poor out come.

Table-1. Summa	ai y	statistic	50	I Neuric	gra	ue in pi	e a	na posi ope	I al.	ive	states	
Neuric Grade		Ν		Mean		SD		Minimum			Maximum	
Pre operative		47		4.13		0.9		3		5		
Post operative		47		3.66		1.18		2		5		
						5						

Table-1: Summary statistics of Neuric grade in pre and post operative states

Table-7 :Comparison of mean parameters of Neuric Grades, MRC Muscle Power Grades of pre and post operative states with age


			Mea	ın sc			Z-Va			P-valu	Je				Infe	rence	e
Param eter		Opera tion							A	ge							
			< 50			≥ 5	<5 0	≥ 5		<50		≥ 5			<5 0		$\frac{\geq}{5}$ 0
			4. 06	4	4.29				1								
Neuri		Pre					-	-		<0.		<0			Η		Н
c							3.	2.		01		.01			S		S
							7	 8									
 1																	
 grade													-	_			
		Post	3.		3.	71											
			64														
			1														

Cervical Disc Prolapse – Clinical Presentation, Management, Post Operative Outcome And...

UL-		Pre	•	2.		2.	64												
MRC				67															
Muscl									-3	-2		<0.			<0			Н	S
e												01			.05			S	
Power		Post		2.		2.	93	•											
				94															
Grade																			
LL-			•					•						•					
MRC																			
		Pre		2.		2.4	43												
Muscl				39					-	-		<0.			0.0			Н	S
e									3.	2.		01			3			S	
Power		Post		3.		3.	14		6	2									
1				18															
Grade				1		1													
UL-Uppe	er Lim	b LL-Lo	wer l	[imb]	HS-I	Higl	hlv Si	onifi	cant	•	•		S-S	ion	ificant	•	•		

Bone graft fusion rates in our study were 75%, 95.74% and 100% at end of 4 months, 4 to 8 months and 8-12 months respectively when compared to 64% (< 4 months), 89% (4-8 months) and 94% (8-12 months) for ACDF and 70% (< 4 months), 93% (4-8 months) and 98% (8-12 months) for ACDFP in RJ Mobbs⁵⁰ et al study. Maximum fusion rates have been observed between 5 – 8 months of post operative period.

com	olications :	
1.	Mortality	Nil
2.	Nil	
3.	Disc space infection	2
4.	Implant removal	2(uncontrolled disc space infections)
5.	CSF leaks	2 (improved with lumbar drains)
6.	Recurrent laryngeal nerve palsy	2(neuropraxia improved with steroids)
7.	Oesophageal injury	N il
8.	Tracheal injury	N il
9.	Cervical sympathetic injury	N il
10. V	'asular injury	N i 1
11. K	Typhosis	N i l
12. N	lon union	N i l
13. E	Oysphagia	N i l
14. N	leurological deterioration	N il
15. E	Onor site complications	N il

- 1. Mri Sagittal Section : C3-C4 Pivd
- 2. Mri Sagittal Section : C4-C5 Pivd
- 3. Mri Sagittal Section : C5-C6 Pivd
- 4. Mri Axial Section: C5-C6 Pivd
- 5. Intraoperative Photographs Showing Bone Graft With Plates And Screws Insitu
- 6. Post Operative X-Rays Showing Bone Graftwith Plates And Screws Insitu At C3-C4 Level
- 7. Post Operative X-Ray C-Spine Lateral View Of C3-4 Fixation
- 8. Post Operative X-Ray C-Spine Lateral View Of C4-5 Fixation

IV. Discussion

A prospective study of 47 cases with cervical disc prolapsed who undergone anterior cervical discectomy and autogenous bone graft fusion with plating is carried out at Government General Hospital, Guntur from January 2013 to December 2014.

All the cases were operated by a single surgeon, to avoid the inter surgeon bias. An analysis of clinical presentation, mode of management, post operative outcome and complications are discussed below.

Clinical Presentation

	TABLE – 8		
	Present	Lunsford	
	study	Study	
Myelo Radiculopathy	42.55%	41%	
Myelopathy	38.29%	40%	
Radiculopathy	19.14%	19%	

Disc Involvement :

Regarding Disc distribution this study showed the C_{5-6} -48.93%; C_{6-7} -36.17%; C_{4-5} -17.02% and C_{3-7}

⁴ - 4.25% respectively. In Lunsford³² et al (28) reported the similar representation with C_{5-6} -48%; C_{6-7} -37%; C_{4-5} -10%.which is comparative with the present study.

In Caspar⁷² et al study the disc involvement is as follows $c_{5-6} - 45.5\%$, $C_{6-7} - 36.2\%$, $C_{4-5} - 11.4\%$, $C_{3-4} - 6.5\%$ 3%. Which is comparative with the present study

Postoperative Outcome:

Coming to the post operative surgical out come and results, based on preoperative and postoperative MRC⁷¹ muscle power gradings, Nurick²⁶ gradings and utilizing the criteria set out by Odom⁴² et al, out of a total 47 patients, 78.72% had excellent outcome, 12.76% had good outcome, 6.38% had fair out come. 2.12% had poor out come. When compared with white cloud series based on Odoms criteria which showed the 70% good and excellent

Results, 17% F	air Results, 9%, Poor Results This Study Shows	Better Results.
In	Aronson ⁴ Study Which Showed 87% Good	And Excellent Out
Come,10%	Fair Outcome, 3 % Poor Outcome Which Are Comparable With Our	
Study.		
	53	

In Ralph J. Mobbs, K.C chandran⁵⁰ and P Prakasha rao study the post operative outcome is as follows. Excellent 78%, good 14%, fair 7%, poor 1 % which are comparable with our present study.

In this study mortality rate is 0%. In this study there is no graft extrusion, graft collapse or graft migration (0%) when compared to other series like Graham¹⁹ in which graft extrusion is about 5 - 6% and 1% in Ralph J. Mobbs⁵⁰ etal study. In this study we encountered 2 (4.25%) patients with disc space infections which could not be controlled with consertive management and eventually lead to removal of Implants and debridement in the two patients and later the infection is controlled and patients had been discharged without neurological deterioration when compared to (1%)disc space infection, (1%) implant removal in Ralph J. Mobbs⁵⁰, chandran and prakasarao series.

In this study we encountered 2 patients with CSF leaks in the immediate post operative period who were managed with antibiotics and placement of lumbar drains and discharged uneventfully which were not reported in other similar series. In this study we encountered 2 patients with transient recurrent laryngeal nerve paresis(Neuropraxia) which improved with over a period of 1 month when compared to (1%)recurrent laryngeal nerve injury in Bulger⁹ series. In our study no oesophageal, tracheal, or cervical sympathetic injury have occurred which have been reported in Graham¹⁹ and Jew series. In our study no vascular injury had occurred as reported in white cloud⁶ series. In our study no postoperative kyphosis(0%) is seen when compared to 3 patients reported in Ralph J. Mobbs⁵⁰ etalstudy. In our study cases with non union is(0%) when compared to 9 patients with Non union as reported in Ralph J. Mobbs⁵⁰ study. In our study cases with dysphagia is nil (0%) when compared to 6 patients with dysphagia as reported in Ralph J. Mobbs⁵⁰ study. In our study nor study neurological deterioration is (0%) when compared to 1.3% as reported in Flynn study and 1 in Ralph J. Mobbs⁵⁰ etal study.

In our study donor site complications like infection, localised pain and meralgia paraesthetica is nil (0%) when compared to 22%(meralgia paresthetica – 14%; localized pain – 8%) in Jeffrey²⁵ series and 8 patients in Ralph J. Mobbs⁵⁰ etal study.

			LE – 11				
Complications	Present	Grahams ¹⁹	Bulger ⁹	Flynn ¹⁷	Jeffery ²⁵	Ralph	White
	Study				Series	J.	Cloud ⁶⁹
						Mobbs	Series
						50 etal	
						study	
Mortality	Nil (0%)						
Graft migration/	2 (4.25%)	5 -6 %				1	
Extrusion/Collapse							
Disc space	2% (1	
Infection	4.25%)						
Implant removal	2% (4.25%)					. 1	
CSF leaks	2%(4.25%)						
			· ·		•	•	•
Recurrent	2(4.25%)		1%			-	
						-	
Laryngeal Nerve							
Injury							
Oesophageal	0%	present					
Injury							
Tracheal injury	0%	present					
Cervical	0%	Present					
sympathetic injury							
Vasular injury	0%	NIL	NIL	NIL	NIL	NIL	present
Kyphosis	0%					3	
Nonunion	0%					9	
Dysphagia	0%					6	
Neurological	0%			1.3%		1	
deterioration							
Donor site	0%				22%	8	
complications							

TABLE – 11

These results showed that anterior cervical discectomy with autogenous bone graft fusion with plating appears to be an effective method of management for most cases of cervical disc prolapse with better post operative outcomes and less complications when compared with other methods of management facilitating better graft stability and fusion as shown by most of the similar series including the present study.

V. Conclusion

- [□] Cervical disc prolapse is a degenerative condition of cervical spine affecting mostly the individuals aged between 40 -50 years with tendencytowards male preponderance affecting males more than females.
- [□] The commonest clinical presentation is myeloradiculopathy followed by myelopathy followed by radiculopathy in the descending order of presentation.
- [□] The commonest disc affected is C5 C6 followed by C6 C7 followed by C4 C5 in the descending order of frequency.
- Anterior cervical discectomy with autogenous bone graft with plating appears to be the most effective method of management for most cases of cervical disc prolapsed with better postoperative out comes and less complications when compared with other methods of management facilitating better graft stability and fusion as shown by most of the similar series including the present study.
- [□] We conclude that a conservative construct utilizing a single screw per vertebral body and a simple one hold plate system appears to be strong enough to afford stability in nontraumatic lesions of sub axial spine comparable to other currently used constructs.
- [□] This is time efficient and could be cost effective and had considerably less metal burden on the spine .Our results also suggest that in single level lesions this construction can be used safely with complete success

References

- [1]. Adams CBT, Logue V.Studies in cervical spondylotic myelopathy: I.Movement of the cervical tools, dura and cord, and their relation to the course of the extrathecal roots. Brain 1971; 94:577-568.
- [2]. Adams CBT, Logue V.Studies in cervical spondylotic myelopathy: I.Movement of the cervical tools, dura and cord, and their relation to the course of the extrathecal roots. Brain 1971; 94:587.
- [3]. Arnold JG Jr: The clinical manifestations of spondylochondrosis (spondylosis) of the cervical spine. Ann Surg 141:872-889, 1955.
- [4]. Aronson NI, Filtzer DL : Anterior cervical discectomy & fusion smith Robinson approach. Contemp Neurosurg 4:1-5, 1982.
- [5]. Bailey RW, Bagdley SK: Stabilization of the cervical spine by an anterior fusion. J Bone Joint Surg [AM] 42A : 565-594, 1960
- [6]. Bardeen CR: The development of the thoracic vertebrae in man. Am J Anat 4:163-174, 1905.
- [7]. Belani KG, Buckley JJ, Gordon JR, Castaneda W: percutaneous cervical central venous line placement: A comparison of the internal and external jugular vein routes. Anesth Analg (Cleve) 59:40-44, 1980
- [8]. Brain WR. Northfield D, Wilkinson M. The Neurological Manifestations of cervical spondylosis. Brain 1952; 7S:187-225
- [9]. Bulger R.R.; Rejowski, J.E., and Beatty R.A: Vocal cord paralysis associated with anterior cervical fusion: consideration for prevention and treatment. J.Neurosurg., 62:657-661, 1985.
- [10]. Clarke E. Robinson PK: Cervical myelopathy: Complication of cervical spondylosis. Brain 78: 483, 1956
- [11]. Cloward RB: The anterior approach for removal of ruptured cervical disks. J Neurosurg 15:602-617, 1958.
- [12]. Cloward RB: Complications of anterior cervical disc operation and their treatment. Surgery 69: 175-182, 1971.
- [13]. Crandall PH, Batzdorf U.: Cervical spondylotic myelopathy. J Neurosurg 1966: 25: 57-66
- [14]. Elsberg CA: The extradural ventral chondromas (ecchondrosis), their favorite sites, the spinal cord and root symptoms they produce and their surgical treatment. Bull Neurol Inst N Y 1:350-388, 1931.
- [15]. Fager CA: Management of cervical disc lesions and spondylosis by posterior approaches. Clin Neurosurg 24:488-507, 1976.
- [16]. Fager CA: Posterior surgical tactics for the neurological syndromes of cervical disc and spondylotic lesions. Clin Neurosurg 25:218-244, 1977.
- [17]. Flynn TB: Neurological complications of anterior cervical interbody fusion spine, 7:536-538, November 1982.
- [18]. Gooding MR, Wilson CB, Hoff JT: Experimental cervical myelopathy, effects of ischemia and compression of the canine cervical spinal cord. J Nerosurg 1975: 43: 9-17.
- [19]. Graham JJ: Complication of cervical spine surgery. 2nd ed. Philiodelphia JB Lippincott; 1989: 831-837.
- [20]. Hanflig SS: A pain in the shoulder girdle, arm and precordium due to cervical arthritis, JAMA 106:523-526, 1936.
- [21]. Hoff JJ. The patho physiology of cervical spondylotic radiculopathy and myelopathy clin Neuro surg 1977; 24: 474-487.
- [22]. Hughes JJ. Pathology of the spinal cord. London Lloyd Luke Medical Books, 1966.
- [23]. Hutchinson EC, Yates PO: The cervical position of the vertebral artery: A clinicopathological study. Brain 79: 319, 1956.
- [24]. J.Hoff, Stephen M.Papadopoulos; Cervical disease and cervical spondylosis, Ch.381, Textbook of Neurosurgery by Robert H.Wilkins and Setti S.Rengachary, 2nd editions p.3765-3774.
- [25]. Jeffery R Mc Connell MD Brain, J.C. Freeman, Ujjwal Michael P., A Prospective Randomized comparison of coralline Hydroxy apatite with auto graft in cervical interbody fusion, spine 1,3: 184, 2003.
- [26]. John M. Small, M.D., William H. Dillin, M.D., and Robert G. Watkins, M.D;Clincial syndromes in Cervical Myelopathy-Cervical Disc Disease Ch.20, Rothman – Simeone The Spine 4 the Edition, p.467-468.
- [27]. Jonathon R. Ball and R. John Hurlbert; Concepts of Disk Degeneration and Regeneration, Chapter 270, Youmans Neurological Surgery 6th Edition p.2752-2753.
- [28]. Keyes DC, Compere EL: The normal and pathological physiology of the nucleus pulposus of the intervertebral disc. J Bone Joint Surg (Am) 14A:897-938, 1932.
- [29]. King A.I. and Vulcom A.P.: Elastic deformation characteristics of the spine, J.Biomech, 4:413-429, 1971.
- [30]. Kraus DR, Stauffer ES: Spinal cord injury as a complication of elective anterior cervical fusion. Clin Orthop 112:130-141, 1975.
- [31]. Lawrence T. Kurz, M.D, Nonoperative treatment Cervical disc Disease Ch.20 Rothman-simeone the spine, 4th Editions. p.492-495.
- [32]. Lunsford LD, Bissonette DJ, Jannetta PJ, Sheptak PE, Zorub DS Anterior surgery for cervical disc disease: Part I. Treatment of lateral cervical disc herniation in 253 cases. J Neurosurg 53:1-11, July 1980.
- [33]. Mark Garrett, Juan Bartolomei, and Valker K.H. Sonntag; Anterior Approach for Cervical Spondylotic Myelopathy Ch.280 Youmans Neurological surgery 6th Edition, p.2876-2887.
- [34]. Markolt KLand Morris JM: The structural components of the intervertebral disc. J. Bone Joint surg: (All) 56: 675-687, 1974.

- [35]. Matsuda Y, Miuazakik: Increased MR signal intensity due to cervical myelopathy: Analysis of 29 surgical cases. J Neurosurg 74: 887-892, 1981.
- [36]. MC RaeDL. The significance of abnormalities of the cervical spine. Am.J. Roentgonol 1960:84:3-25.
- [37]. Michenfelder JD: Central venous catheters in the management of air embolism: Whether as well as where. J Anesthesiol 55:339-343, 1981.
- [38]. Murphey F. Simmons, JCH, Brunson B: Ruptured cervical disc, 1939 to 1972. Clin Neurosurg 20:9-17, 1972.
- [39]. Murphey F. Simmons JCH, Brunson B: Cervical treatment of laterally ruptured cervical discs: Review of 648 cases, 1939-1972. J Neurosurg 38: 679-683, 1973.
- [40]. Nachlas IW: Psuedo-angina pectoris originating in the cervical spine. JAMA 103:323-325, 1934.
- [41]. Nachlas IV: Scalenus anticus syndrome or cervical foraminal compression? South Med J 35:663-667, 1942.
- [42]. Odom GL, Finney W. Woodhall B: Cervical disc lesions. JAMA 166:23 28, 1958.
- [43]. Oppenheimer A: Discogenic disease of the cervical spine with segmental arthritis. AJR 37: 484-493, 1937.
- [44]. Oppenheimer A: Narrowing of the intervertebral foramina as a cause of pseudorheumatic pain. Ann Surg 106: 428-440. 1937.
- [45]. Oppenheimer A, Turner E: Discongenic disease. Am J Surg 47:642-649, 1937.
- [46]. Peter D. Angevine, Paul C. McCormick, Posterior Approach to cervical
- [47]. degenerative disease, Ch.279, Youmans Neurological Surgery 6th Edition. p.2874-2875.
- [48]. Prasad S.S. V. Vannemreddy, Alan Orgden, Debi Mukherjee; Anterior subaxial cervical spine fixation using a plate with single screw per vertebral body: A simple and efficient construct – Clinical series and a cadaver study, Neurology India Mar-Apr 2009, Vol 57, Issue 2 p.151-156.
- [49]. Puri VK, Carlson RW, Bander JJ, Weil MH: Complications of Vascular catheterization in the critically ill: A prospective study. Crit Care Med 8:495-499, 1980.
- [50]. Raaf JE: Surgical treatment of patients with cervical disc lesions. J Trauma 9:327-338, 1969.
- [51]. Ralph J. Mobbs, Prakash Rao, Nadana K, Chandran: Anterior cervical discectomy and fusion : analysis of surgical outcome with and without plating; Journal of Clinical Neuroscience 14, 2007, p.639-642.
- [52]. Rhoton AL Jr., Henderson ED: Cervical disc disease with nerve compression: Anterior surgical approach. Minn Med 55:998-1002, 1972.
- [53]. Rich D. Guyer, M.D, Rick B. Delamarter, M.D, Complications of Cervical Spine Surgery- Surgical management of cervical disc disease Ch.21, Rothman-Simeone the Spine 4th Edition. p.540-549.
- [54]. Robertson JT: Anterior operations for herniated cervical discs and for myelopathy. Clin Neurosurg 25:245-250, 1978.
- [55]. Robinson RA, Smith GW: Anteriolateral cervical disc removal and interbody fusion for cervical disc syndrome. Bull Jons Hopkins Hosp 96:223, 1955 (abstr).
- [56]. Schmorl G: Uber die an den wirbeldandscheiben vorkommenden ausdehnungsund zerreissungsvorgange und die dadurch an ihaen und der wirbelspongiosa hervorgerufenen veranderungen. Verh dtsch pathol Ges 22:250-262, 1972.
- [57]. Schneider RC, Cherry G, Pantel H.Syndrome of acute central cervical spinol cord injury with special reference to the mechanism involved in hyperextension injuries of cervical spine. J. Neurosurg 1954; 11: 546-577
- [58]. Scoville WB, Whitcomb BB: Lateral rupture of cervical interver tebral discs. Postgrad Med 39:174-180, 1966.
- [59]. Scoville WB, Dohrmann AM, Corkim AR: Late results of cervical disc surgery. J.Neurosurg 45: 203, 1976.
- [60]. Semmes RE, Murphey F: The syndrome of unilateral rupture of the sixth cervical intervertebral disc. JAMA 121:12091214, 1943.
- [61]. Simmons EH, Bhalla SK: Anterior cervical discectomy and fusion: A clinical and biomechanical study with eight year follow-up. J Bone Joint Surg [Br] 51B: 225-227, 1969.
- [62]. Smith GW, Robinson RA: The treatment of certain cervical –spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg [Am] 40A:607-624, 1958.
- [63]. Spurling RG, Scoville WB: Lateral rupture of the cervical intervertebral disc. Surg Gynecol Obstet 78:350-358, 1944.
- [64]. Stookey B: Compression of the spinal cord due to ventral extradural cervical chondromas. Arch NeurolPsychiatry 20:275-291, 1928.
- [65]. Stookey B: Compression of spinal cord and nerve roots by herniation of the nucleus pulposus in the cervical region. Arch Surg 40:417-432, 1940.
- [66]. Turner EL, Oppenheimer A : A common lesion of the cervical spine responsible for segmental neuritis. Ann Intern Med 10:427-440, 1936.
- [67]. Vesalius A: Die humani corporis fabrica Libri Septem. Basileae, per J Oporinum, 1555, pp 71-73.
- [68]. Vladimir Y. Dadashev, Gerald E. rodts. Jr, Treatment of Disk and Ligamentous Diseases of the Cervical spine Ch.278, Youmans Neurological surgery 6th Editions. p.2860-2867,
- [69]. Von Luschka H: Die Halbgelenke des Menschlichen Korpers, Berlin, G Reimer, 1858.
- [70]. White Cloud TS III: Complications of anterior cervical fusion. In: AAOS instructional course Lectures, St. Louis, MO: Mosby; 1978; 27:223-227
- [71]. Wilkinson M. Cervical spondylosis; its early diagnosis and treatment. 2nd ed. Philadelphia: Saunders, 1971.
- [72]. William W. CampBell : Motor strength and power chapter 27, the Dejongs Neurologic examination, 7th Edition, p.413-414.
- [73]. Wolfhard caspar, FredH. Geisler, Tobias Pitzen and +Todd A. Johnson; Anterior Cervical Plate Stabilization in One and Two-level Degenerative Disease: Overtreatment or benefit?, Journal of Spinal Disorders vol.11, No.1, pp.1-11, 1998 Lippincott-Raven Publishers, Philadelphia